If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+21q+54=0
a = 1; b = 21; c = +54;
Δ = b2-4ac
Δ = 212-4·1·54
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-15}{2*1}=\frac{-36}{2} =-18 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+15}{2*1}=\frac{-6}{2} =-3 $
| 3x^2+30x=-87 | | x^2+x^2+22x+121=4x^2 | | 3(4x+2)=½(8x-3)-8 | | (x-5)/4=(2x-10)/8 | | 5(8-2x)=12 | | 5*x^3-48=80x-3x^2 | | 3500+4x=15x | | 40=(2t)/9 | | 177=3x+3(5x-7) | | 3500-4x=15x | | .12y+y=79000 | | 7x-12=5x-4 | | 111=2x+3(7x-9) | | -3(4y-10)-y=-3(y-2) | | -13s+-6s–-12=-7 | | 37x+11=6(6x+6) | | 9+y=51/3 | | 50/3x=48 | | 4x+2x+8=33 | | 15x+50-5x^2=0 | | 11/3*x=2/9 | | 1/3x-5=2/5x+12 | | 1/2h(17)=119 | | e-12=-3 | | (6x+7)=(x+3) | | 39-w=221 | | 6x+7(4x-21)=159 | | -3c–12=-5+c | | X2-5x+5=0 | | 3x/12=9/4 | | 6x+7(4x-12)=159 | | 3x/12=11/4 |